
EM 1110-1-2909
1 Aug 96

4-1

Chapter 4
Requirements Analysis

4-1. General

a. Geospatial Data Systems are successful only when
they comprehensively and consistently meet the needs of
users. As such, the procurement, installation, and use of a
successful GDS depends on well-defined user requirements
obtained through a development stage known as require-
ments analysis. Requirements analysis is a detailed study of
the needs of potential users of the GDS which helps cut
down the costs of acquiring and maintaining a GDS. The
requirements obtained during this study may come from a
variety of sources including system operators, domain
experts (someone with an in-depth knowledge of the
functional area), requirements and software engineers,
managers, existing systems and standards, specifications,
and any other potential users. When completed, the
requirements analysis should result in a clear statement of
end-product characteristics, required production rates,
estimated data volumes, and a cost/benefit rationale.

b. The documentation required to justify and validate the
acquisition of Automated Information System (AIS)
hardware and/or software is currently in transition between
the General Services Administration (GSA) and the Office
of Management and Budget (OMB). It is anticipated that
policy and direction down to MACOM level will not be
received until the Fall, 1996. Project Managers should
contact their local Director or Chief of Information
Management for guidance and assistance in the required
documentation. Experience has shown that a more rigorous
requirements definition is needed for GDS.

4-2. What is a Systems Requirements Analysis?

a. This section defines a systems requirements analysis
and explains many of the elements of a good requirements
analysis. GD&S require data to operate, so a separate, but
similar, data requirements analysis is needed to ensure that
the system has the data sets needed to perform the specified
functions. The data requirements are discussed in detail in
Chapters 7 and 8 of this manual.

b. The earliest stages of the system development cycle
should involve information gathering about the system to be
procured. A committee determines the GD&S needs of each
potential user through written, verbal and face-to-face
contact. These needs or requirements can include anything
from types of data the GDS can handle to necessary product
output types. Once the requirements have been gathered and
compiled into a manageable set, they form the basis for a

System Requirements Specification (SRS) which is used to
determine all the external features of the GDS.
Requirements analysis is the activity of understanding the
application domain, the specific problems and needs of the
users, and the constraints upon possible solutions. When a
requirements analysis is done properly, it is possible to
match the description contained in the SRS to several
systems and pick the GDS which best suits all the users in
the agency.

c. One of the misconceptions about requirements
analysis is the “what versus how” dilemma. A requirements
analysis study should only include any external behavior of
the GDS, however, many people tend to confuse the external
and internal behaviors and try to describe not only their
needs but also how the system should solve those needs.
The “how” aspect of the system should be left to the design
phase of the development cycle which comes after the
requirements analysis has been completed. GDS system
requirements are capabilities needed by users to solve GDS
problems (e.g., performing a site suitability analysis which
involves graphical and textual data and multiple maps with
differing projections), and these requirements must be met
by a system component (e.g., computer system, software,
data, etc.) in order to satisfy a contract, standard, or system
specification. System requirements can be broken down into
seven main categories:

` Functional requirements specify transformations
that take place in the software system (i.e., the
inputs and outputs for each function).

Example: The software shall identify all overshoots
and undershoots by placing a box around the dangling
end of each line segment.

` Behavioral requirements specify the way the
system reacts to external and internal stimuli (i.e.,
what causes certain activities to start, stop, etc.).

Example: The program shall pause and return to the
previous condition when the escape key on the key-
board has been depressed.

` Performance requirements specify timing,
throughput, and capacity of the system.

Example: The system shall be able to return the
geographic location of any address in under 3 seconds.

` Operational requirements specify how the system
will run and communicate with its human users.

EM 1110-1-2909
1 Aug 96

4-2

Example: The system shall provide a help facility,
accessible from software, that describes the system
components.

` Interface requirements specify characteristics of the
human/computer interaction, such as screen layouts
and validation of user data entry. In the case of
system, an interface requirement can also specify
hardware interfaces.

Example 1: Error messages must be displayed on the
screen starting at row 1, character position 1.

Example 2: The system must be targeted to run on Sun
workstations with the Solaris 2.1 Unix operating system.

` Quality Requirements specify system reliability,
useability, and maintainability.

Example: The system must not fail more than 3 times
during 1,000 CPU hours of operation.

` Constraints specify restrictions that impact the
system in some way.

Example: Each line segment will be limited to
255 coordinate pairs.

d. In addition, there can also be security requirements
when the system is going to be working with classified data
and data requirements dealing with the validation and accu-
racy of the data sets passed to the system.

e. When the task of gathering the system requirements is
over, it is important to sort through them to build a man-
ageable set for the SRS. You will probably find that many
requirements have been repeated several times although they
may be worded differently. Others may be ambiguous,
needing additional input from the source of the requirement.
The Carnegie Mellon Software Engineering Institute has
developed guidelines for generating such manageable sets.
In these guidelines, they describe the seven requirements
error types to watch out for when organizing the
requirements set:

` System requirements are ambiguous if there is more
than one interpretation. Ambiguity arises due to the
pitfalls of natural language.

Example: Total item count is taken from the last record.

Problem: How do you interpret last record?

` System requirements are incorrect if some fact
within the requirement has been misrepresented.

Example: For all computations, use the northwest
corner as the origin of the data set.

Problem: What if the southwest corner were the origin
for some of the data sets?

` System requirements are incomplete if one or more
necessary facts (or requirements) have been
omitted.

Example: Error messages must be displayed on row 24
of the terminal screen.

Problem: How will the system display multiple,
simultaneous error messages?

` System requirements are inconsistent if they are in
conflict.

Example: C must be computed as A + B
C must be computed as A - B

Problem: C has two definitions.

` System requirements are volatile if they are
susceptible to change.

Example: The system shall handle only one data set at a
time.

Problem: Although this may satisfy current needs, what
happens if you need to work with multiple data sets
simultaneously?

` System requirements are untestable if no cost-
effective way exists to verify them.

Example: The system shall have a good user interface?

Problem: There is no way to define a “good” interface,
so there is no way to verify it.

` System requirements are nonapplicable if they are
not relevant to the problem.

Example: The operator of the system must be standing
upright during operation of the system.

Problem: This requirement has nothing to do with the
development or procurement of the system.

f. These guidelines should help throughout the systems
requirements analysis process. The requirements analysis is
described from start to finish in Chapter 4. Remember, that
once you have formulated an SRS from your requirements

EM 1110-1-2909
1 Aug 96

4-3

set, it should be used as a “bible” from which a GDS will be
procured. The SRS can help identify potential errors before
they become costly to fix, so you should treat this stage in
the GDS life cycle with the utmost importance.

4-3. Why is Requirements Analysis Important?

A requirements analysis can appear to be an overwhelming
task to complete for a Command-wide GD&S procurement.
However, the benefits of performing a comprehensive
analysis prior to system acquisition are well-documented and
easily justify the effort.

Errors are much easier and less costly to correct when they
are detected early in the development stage rather than later
on. The reason for this is that one component in a system
will often build upon the capabilities of another until you
have a fully-integrated system. In any failed system
development, it can be demonstrated that when one
component is missing certain required capabilities, this
problem will propagate itself through the rest of the system.
Other components will not be able to meet certain needs, and
so on with a cumulative effect on the entire system. This
lesson is equally true for an “off-the-shelf” GDS and a
custom-developed GDS.

The document most often used to record the system
requirements is the System Requirements Specification
(SRS). It clearly explains every detail of the system without
ambiguity or error, so that the buyer can make intelligent
choices about the system to be procured. In addition, this
document also serves as contract between the buyer and
developer/supplier; the GDS is not complete until the
developer/supplier has met every requirement contained in
the SRS.

4-4. Who Should Perform the Requirements
Analysis?

In “A Process for Evaluating Geographic Information
Systems,” Guptill writes:

The first problem faced by any organization considering the
implementation of a [GD&S] is to determine who should
perform the requirements analysis. Requirements Analysis'
for successful [GD&S] installations have been performed by
in-house staff, contractor staff, or through a combination of
both approaches. There are many valid reasons for opting
for any given approach, however, the desired result is the
same, to develop a comprehensive assessment of the
analytical capabilities and products required by potential
[GD&S] users. The requirements of the users can then be
matched with system capability to determine optimal
configurations for the organization's [GD&S] procurement.

In-house staff inherently have a greater understanding of the
tasks which are to be considered for automation through
[GD&S] technology. This unique knowledge may justify
training staff members in [GD&S] technology and require-
ments analysis techniques so that the requirements analysis
may be performed in-house. In cases where existing staff
members have expertise in GD&S's there may be little
reason to consider bringing in outside assistance.

When staff time or skills are not available, or when new
programs and concepts are being proposed that staff is not
experienced with, outside resources may be required to
perform the requirements analysis. Assistance may also be
available from resources within the parent agency of the
organization considering the [GD&S] implementation.
Assistance in developing Requests for Proposals (RFPs) for
requirements analysis services may similarly be available
within the agency.

The important element in determining who should perform
the requirements analysis is assuring that the provider of the
service has a thorough understanding of both [GD&S] tech-
nology and the operations of the organization. When an
outside organization is brought in to perform the
requirements analysis, it is the responsibility of the technical
representative or point of contact for the requirements
analysis services procurement to assure that the contractor
fully understands the organization's products, services,
missions, and needs.

Possible conflicts of interest should also be considered
before a final determination is made as to who should
perform the requirements analysis. Organizations and
individuals may, in some instances, have a vested interest in
certain hardware or software types, and may be inclined,
whether intentionally or unintentionally, to bias the results
of the requirements analysis toward particular systems. The
objective of the requirements analysis is to identify the needs
of an organization and then to select the [GD&S] that best
fits those needs, if such a system exists. All reasonable effort
must be made to assure this goal is realized, including
assessing possible conflict of interests, or biases, on the part
of persons or organizations that potentially could perform
the requirements analysis.

4-5. Performing a Requirements Analysis

The purpose of this section is to lay out a generic framework
for performing a requirements analysis with some key tips
where appropriate.

a. Elicitation. The first step in performing a require-
ments analysis is to obtain system requirements from all
persons involved with the use of the GD&S system. This

EM 1110-1-2909
1 Aug 96

4-4

step, known as requirements elicitation, can involve any of
the following activities:

` Interviewing.

- Face-to-face contact with potential users, man-
ager, etc.

- Should identify relevant positions from a formal
organizational chart.

- Identify the work flow interactions between users
and the rest of the organization.

- Ask context free questions such as:

“Who else should I talk to?”

“Who else may use the system?”

“Who else interacts with you?”

- Inform interview candidates ahead of time and
give them any relevant material.

- Secure an adequate time commitment from
candidates.

- Give the person reasonable courtesies in terms of
answering your questions.

- Periodically confirm your understanding of the
person's responses.

- Summarize your understanding at the conclusion
of the interview.

` Brainstorming.

- A simple technique for generating ideas.

- Can be used for generating alternate viewpoints
of the problem.

- Works best with groups of 4-10 people.

- Outcome depends on the expertise and knowl-
edge base of the participants.

- Generation phase: a leader provides a seed
expression to the problem.

- Generation phase: participants freely generate
ideas relevant to the problem.

- Generation phase: all ideas are placed on a large
board or sheets of paper.

- Generation phase: should be stopped when
ideas become low (~ 15-20 min.).

- Consolidation phase: ideas evaluated, outliers
removed, related ideas combined.

- Consolidation phase: remaining ideas are
grouped and classified.

` Scenario generation.

- Determine needs through real world system
usage scenarios.

` Rapid prototyping.

- Quick user interface or basic system shell
construction.

` Modeling.

- System portrayal through means such as data
flow diagrams.

b. Analysis. The next step in the process is to orga-
nize the information received from the elicitation process.
At this stage you want to remove any requirements errors
you can find by looking for ambiguities, inconsistencies, and
any of the other seven requirements errors previously
mentioned. You also want to remove any requirements
which are duplicates. The main goal here is to build an
organized set of requirements that clearly state the system
and its behavior with as few requirements as possible. If
additional information is required, you should go back to the
elicitation stage before continuing, because you will need the
final requirements set before determining feasibility.

c. Feasibility. It may or may not be possible to
procure a system with all the capabilities requested by users,
so you must next perform a feasibility analysis. During this
phase, it is a good idea to conceptually plan the system
without getting into too much detailed design. You should
also speak to representatives of commercial GDS vendors to
discuss your requirements and how their systems could be
used to meet them. System modeling through data flow
diagrams, decision tables and trees, and control flow
diagrams is a good way to visualize the system from the
given requirements set. Matching the capabilities of possible
GDS solutions against these models will give you an
understanding of what will be required to build the
necessary GDS, either as a custom software development or
as a customization of a commercial GDS. If specific

EM 1110-1-2909
1 Aug 96

4-5

requirements are making the GDS too expensive or risky to
build, you must decide whether or not to write the SRS and
have the system developed as-is or to eliminate the infeasible
requirements.

d. Specification. Without an SRS, the contractor/
in-house development team would have no idea of what was
to be built, your users would be left with false expectations
of the GDS, and there would be no way to test if the solution
meets all the needs captured during the elicitation and
analysis phases. Therefore, you must document the external
behavior and qualities of the system while excluding any
internal information concerning how the software and
hardware operates and the algorithms it uses. The SRS has
four roles in the development life cycle: (1) it is the primary
input to the design team; (2) it is the primary input to the
system test planners; (3) it controls the evolution of the
system; and (4) it communicates an understanding of the
system requirements. The SRS should be understandable to
anyone who reads it regardless of their background, and
should contain the following qualities:

` An SRS is correct if every requirement stated
therein helps to satisfy a user need.

` An SRS is complete if every user need is satisfied
by a system that satisfies every requirement in the
SRS.

` An SRS is unambiguous if every requirement stated
therein has only one possible interpretation.

` An SRS is consistent if no subsets of the require-
ments stated therein conflict.

` An SRS is logically closed if it specifies a response
for every conceivable stimulus in every conceivable
state.

` An SRS is organized if its readers can easily locate
information.

` An SRS is modifiable if it can be easily changed
when errors are found, or when it needs to be
changed due to changes in requirements.

` An SRS is traced if the origin of each of its require-
ments is clear.

` An SRS is traceable if other documents can
reference its requirements easily.

` An SRS is concise if it cannot be made shorter with-
out jeopardizing other qualities of the SRS.

` An SRS is verifiable if there exists a finite, cost
effective technique to check that each requirement
in the SRS is satisfied by a system.

` An SRS is annotated by importance if the relative
importance of each requirement is indicated.

4-6. Performing a Data Requirements Analysis

For most GD&S, the data are the largest cost component,
often eclipsing the cost of the hardware and software
combined. It is critical that they be properly managed from
initial design to long-term archive. The data requirements
analysis is the first step in building or acquiring a geospatial
database. It is used to both define the content and format of
the data as well as to inform potential users of the intent to
acquire/produce the database. It is conducted similarly to
the system requirements analysis, with the objective of
establishing the minimum set of requirements that will meet
the near- and long-term needs of the users. It should
establish the database:

` Structure.

` Content.

` Scale/resolution.

` Accuracy.

` Currency.

` Any special user requirements.

a. Structure. The structure of the database defines its
basic makeup. The two most common geospatial database
structures are vector, such as road networks or engineering
drawings, and raster, such as gridded elevation matrices or
digital imagery.

The database structure is established by the application(s) of
the database and the systems that will be used. Applications
that involve detailed analysis of lineated features, such as
road or stream networks, require attributed vector databases.
Raster databases are ideally suited to applications that
involve the boolean combination of areal, layered
information. The computation of cross-country mobility,
which is a function of ground slope, surface roughness,
vegetation coverage, and other terrain characteristics, is an
example of a query that is often performed using raster
databases. The structure of the database should be
determined very early in the requirements analysis.

b. Content. The content of the database is determined
by the applications for which it will be used. If the database

EM 1110-1-2909
1 Aug 96

4-6

has a vector structure, then it is necessary to determine the
specific inclusion criteria for features and attributes. For
example, if roads are required, to what level (highway
versus dirt cart path), and how richly must they be attributed
(e.g., surface material, number of lanes, whether the road has
a median, whether the road access is controlled, whether the
road is one-way or two-way, etc.)? Collecting unnecessary
features and attributes adds to the cost of the database, so it
is important to establish the minimum set of features and
attributes that satisfy all user requirements.

If the database has a raster structure, then the thematic layers
must be determined. Raster databases may have only one
layer, such as a digital image, or it may have many layers,
such as those needed for the cross-country example
discussed above. As with vector databases, increasing the
information carried in a raster database increases the cost of
production, distribution, and archive, so it is important to
establish the user requirements early in the design.

c. Scale/Resolution. Scale refers to the collection scale
of vector databases. A collection scale of 1:24,000, for
example, implies that the vector database has a feature
content that is roughly equivalent to a hardcopy USGS
7.5-minute Quadrangle. Resolution refers to the size of the
pixels in the layer(s). Resolution may be expressed as a
distance on the ground (e.g., 10 meters) or as is common for
raster databases produced by scanning hardcopy products,
pixels per inch (e.g., 300 dpi). The scale/resolution has a
significant effect on the ability to perform certain types of
queries; a database with insufficient scale/resolution may
preclude analysis at the level of detail required, but a
database with an excessive scale/resolution is more
expensive to build and has a negative impact on storage
volume and processing times.

d. Accuracy. The accuracy of a database refers to
several factors, including coordinate accuracy, attribute
accuracy, logical consistency, and completeness.

(1) Coordinate accuracy. Coordinate accuracy refers to
the accuracy, expressed as a distance and a confidence
factor, of the geographic positions in a database. The
coordinate accuracy of a database is influenced by, but not
controlled by, the scale/resolution.

(2) Attribute accuracy. The attribute accuracy reflects
the confidence in the codes and attribute values assigned to
features in a vector database.

(3) Logical consistency. Logical consistency is a
measure of the relative positioning of features in a vector
database. An example of a break in logical consistency is a
building captured on the wrong side of a road. While both

the road and the building may be within their allowed
coordinate accuracies, their relative positioning is not
consistent. Logical consistency is most often expressed as
the percentage of features that are consistent with all
surrounding features. SDTS expands this definition to
include the general fidelity of the data capture, considering
such factors as the presence of overshoots and undershoots,
topological integrity, and graphic presentation.

(4) Completeness. Completeness refers to the per-
centage of features in the real world that are captured in the
database, within the capture rules of the particular database.
Completeness, which deteriorates over time as new features
are added to the real world, is measured at the time of
database construction.

e. Currency. The currency of the database refers to
the elapsed time since collection of the source material.
Areas change at different rates, e.g., cultural features in
suburban areas change much more rapidly than in sparsely
populated regions, so currency requirements for databases
often vary according to the area being captured.

f. Special user requirements. This section of the
requirements analysis captures any unique needs for the
database. These might include: on-line access to the
database by the users, unique archive requirements, or
special services such as on-demand datum or coordinate
transformations.

